References
  • Agora Energiewende and Wuppertal Institut (2019) ‘Climate-Neutral Industry. Key technologies and policy options for steel, chemicals and cement. Executive Summary’.
  • Åhman, M., Nilsson, L. J. and Johansson, B. (2017) ‘Global climate policy and deep decarbonization of energy-intensive industries’, Climate Policy. Taylor & Francis, 17(5), pp. 634–649. doi: 10.1080/14693062.2016.1167009.
  • Axsen, J., Plötz, P. and Wolinetz, M. (2020) ‘Crafting strong, integrated policy mixes for deep CO2 mitigation in road transport’, Nature Climate Change, 10(9), pp. 809–818. doi: 10.1038/s41558-020-0877-y.
  • BigEE (2016) Buildings: Package Elements. bigEE initiative, Wuppertal Institute. Available at: http://www.bigee.net/en/policy/guide/buildings/package-elements/ (Accessed: 25 January 2016).
  • Booth, M. S. (2018) ‘Not carbon neutral: Assessing the net emissions impact of residues burned for bioenergy’, Environmental Research Letters. {IOP} Publishing, 13(3), p. 35001. doi: 10.1088/1748-9326/aaac88.
  • Carley, S. et al. (2017) ‘Global Expansion of Renewable Energy Generation: An Analysis of Policy Instruments’, Environmental and Resource Economics. Springer Netherlands, 68(2), pp. 397–440. doi: 10.1007/s10640-016-0025-3.
  • Climate Action Tracker (2016) Constructing the future: Will the building sector use its decarbonisation tools? CAT Decarbonisation Series. Available at: https://newclimate.org/2016/11/02/constructing-the-future/.
  • Climate Action Tracker (2018) A Policy Spotlight on Energy Efficiency in Appliances & Lights Could See Big Climate Gains. Available at: https://climateactiontracker.org/documents/70/CAT_2018-03-23_DecarbEnergy_CATAnalysis.pdf.
  • Cox, E. and Edwards, N. R. (2019) ‘Beyond carbon pricing: policy levers for negative emissions technologies’, Climate Policy. Taylor & Francis, 19(9), pp. 1144–1156. doi: 10.1080/14693062.2019.1634509.
  • Daioglou, V. et al. (2017) ‘Greenhouse gas emission curves for advanced biofuel supply chains’, Nature Climate Change, 7(12), pp. 920–924. doi: 10.1038/s41558-017-0006-8.
  • Deetman, S., Hof, A. F. and van Vuuren, D. P. (2015) ‘Deep CO2 emission reductions in a global bottom-up model approach’, Climate Policy. Taylor & Francis, 15(2), pp. 253–271. doi: 10.1080/14693062.2014.912980.
  • Dubash, N. K. et al. (2013) Developments in national climate change mitigation legislation and strategy, Climate Policy. doi: 10.1080/14693062.2013.845409.
  • Dulal, H. B., Brodnig, G. and Onoriose, C. G. (2011) ‘Climate change mitigation in the transport sector through urban planning: A review’, Habitat International, 35(3), pp. 494–500. doi: https://doi.org/10.1016/j.habitatint.2011.02.001.
  • Erickson, P., Lazarus, M. and Piggot, G. (2018) ‘Limiting fossil fuel production as the next big step in climate policy’, Nature Climate Change, 8(12), pp. 1037–1043. doi: 10.1038/s41558-018-0337-0.
  • Fischedick, M. et al. (2014) Industry, Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Edited by O. Edenhofer et al. Cambridge, UK and New York, NY, USA: Cambridge University Press.
  • Frank, S. et al. (2018) ‘Structural change as a key component for agricultural non-CO2 mitigation efforts’, Nature Communications, 9(1), p. 1060. doi: 10.1038/s41467-018-03489-1.
  • Frank, S. et al. (2019) ‘Agricultural non-CO2 emission reduction potential in the context of the 1.5 °C target’, Nature Climate Change, 9(1), pp. 66–72. doi: 10.1038/s41558-018-0358-8.
  • Grubler, A. et al. (2018) ‘A low energy demand scenario for meeting the 1.5°C target and sustainable development goals without negative emission technologies’, Nature Energy. Springer US, 3(June), pp. 515–527. doi: 10.1038/s41560-018-0172-6.
  • Herrero, M. et al. (2016) ‘Greenhouse gas mitigation potentials in the livestock sector’, Nature Climate Change, 6(March), pp. 452–461. doi: 10.1038/nclimate2925.
  • Iacobuta, G. et al. (2018) ‘National climate change mitigation legislation, strategy and targets: a global update’, Climate Policy. Taylor & Francis, 18(9), pp. 1114–1132. doi: 10.1080/14693062.2018.1489772.
  • IEA/IRENA (2017) Perspectives for the Energy Transition - Investment Needs for a Low-Carbon Energy System. Available at: https://www.energiewende2017.com/wp-content/uploads/2017/03/Perspectives-for-the-Energy-Transition_WEB.pdf.
  • IEA (2015) Energy and climate change. World Energy Outlook Special Report. Paris, France: International Energy Agency. Available at: https://www.iea.org/publications/freepublications/publication/WEO2015SpecialReportonEnergyandClimateChange.pdf (Accessed: 8 September 2015).
  • IEA (2017) Energy Technology Perspectives 2017. Catalysing Energy Technology Transformations. Paris, France: International Energy Agency. Available at: http://www.iea.org/etp2017/.
  • IEA (2019) World Energy Outlook. Paris, France: International Energy Agency (IEA). doi: 10.1049/ep.1977.0180.
  • IEA (2020) Tracking Industry 2020. Paris. Available at: https://www.iea.org/reports/tracking-industry-2020.
  • IPCC (2014) Summary for Policymakers, Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Edited by O. Edenhofer et al. Cambridge, UK and New York, NY: Cambridge University Press. Available at: http://report.mitigation2014.org/spm/ipcc_wg3_ar5_summary-for-policymakers_approved.pdf.
  • IPCC (2018) Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change,. Intergovernmental Panel on Climate Change.
  • IRENA (2015) Renewable Energy Target Setting. Abu Dhabi, United Arab Emirates: International Renewable Energy Agency.
  • IRENA (2016) Scaling Up Variable Renewable Power: The Role of Grid Codes. Available at: http://www.irena.org/publications/2016/May/Scaling-up-Variable-Renewable-Power-The-Role-of-Grid-Codes.
  • IRENA, IEA and REN21 (2018) Renewable Energy Policies in a Time of Transition. Available at: http://www.irena.org/-/media/Files/IRENA/Agency/Publication/2018/Apr/IRENA_IEA_REN21_Policies_2018.pdf [accessed on 23 July 2018].
  • Jakob, M. et al. (2015) ‘Development incentives for fossil fuel subsidy reform’, Nature Climate Change, 5(8), pp. 709–712. doi: 10.1038/nclimate2679.
  • Jakob, M. et al. (2020) ‘The future of coal in a carbon-constrained climate’, Nature Climate Change, 10(8), pp. 704–707. doi: 10.1038/s41558-020-0866-1.
  • Johnson, E. (2009) ‘Goodbye to carbon neutral: Getting biomass footprints right’, Environmental Impact Assessment Review. Elsevier, 29(3), pp. 165–168. doi: 10.1016/J.EIAR.2008.11.002.
  • Knobloch, F. et al. (2020) ‘Net emission reductions from electric cars and heat pumps in 59 world regions over time’, Nature Sustainability, 3(6), pp. 437–447. doi: 10.1038/s41893-020-0488-7.
  • Kriegler, E. et al. (2018) ‘Short term policies to keep the door open for Paris climate goals’, Environmental Research Letters, 13(7). doi: https://doi.org/10.1088/1748-9326/aac4f1.
  • Kuramochi, T. et al. (2018) ‘Ten key short-term sectoral benchmarks to limit warming to 1.5°C’, Climate Policy, 18(3), pp. 287–305. doi: 10.1080/14693062.2017.1397495.
  • Luderer, G. et al. (2018) ‘Residual fossil CO2 emissions in 1.5–2 °C pathways’, Nature Climate Change, 8(7), pp. 626–633. doi: 10.1038/s41558-018-0198-6.
  • Lund, P. D. et al. (2015) ‘Review of energy system flexibility measures to enable high levels of variable renewable electricity’, Renewable and Sustainable Energy Reviews. Elsevier, 45, pp. 785–807. doi: 10.1016/j.rser.2015.01.057.
  • Mitchell, C. et al. (2011) Policy, Financing and Implementation, IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation. Edited by O. Edenhofer et al. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.
  • OECD/IEA and IRENA (2017) Perspectives for the Energy Transition: Investment Needs for a Low-Carbon Energy System, International Energy Agency. International Energy Agency, International Renewable Energy Agency. Available at: http://www.irena.org/DocumentDownloads/Publications/Perspectives_for_the_Energy_Transition_2017.pdf.
  • Powell, J. T., Townsend, T. G. and Zimmerman, J. B. (2016) ‘Estimates of solid waste disposal rates and reduction targets for landfill gas emissions’, Nature Climate Change, 6(2), pp. 162–165. doi: 10.1038/nclimate2804.
  • Ray, R. L. et al. (2020) ‘Soil CO2 emission in response to organic amendments, temperature, and rainfall’, Scientific Reports, 10(1), p. 5849. doi: 10.1038/s41598-020-62267-6.
  • REN21 (2018) Renewables 2018 global status report. Paris, France, France: REN21.
  • Rentschler, J. and Bazilian, M. (2017) ‘Reforming fossil fuel subsidies: drivers, barriers and the state of progress’, Climate Policy. Taylor & Francis, 17(7), pp. 891–914. doi: 10.1080/14693062.2016.1169393.
  • Roe, S. et al. (2020) ‘Contribution of the land sector to a 1.5°C world’, Nat. Clim. Chang, 9, pp. 817–828. doi: 10.1038/s41558-019-0591-9.
  • Roelfsema, M. et al. (2018) ‘Reducing global greenhouse gas emissions by replicating successful sector examples: the “good practice policies” scenario.’, Climate Policy, 18(9), pp. 1103–1113. doi: 10.1080/14693062.2018.1481356.
  • Somanathan, E. et al. (2014) National and Sub-national Policies and Institutions, Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Edited by O. Edenhofer et al. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.
  • Thompson, R. L. et al. (2019) ‘Acceleration of global N2O emissions seen from two decades of atmospheric inversion’, Nature Climate Change, 9(12), pp. 993–998. doi: 10.1038/s41558-019-0613-7.
  • UNEP (2015) The Emissions Gap Report 2015: A UNEP Synthesis Report. Nairobi, Kenya: United Nations Environment Programme (UNEP). Available at: https://newclimateinstitute.files.wordpress.com/2015/12/unep-emissions-gap-report-2015.pdf.
  • UNEP (2016) The Emissions Gap Report 2016. Nairobi, Kenya: United Nations Environment Programme (UNEP). doi: ISBN 978-92-9253-062-4.
  • UNEP (2019) Emissions Gap Report 2019. Nairobi, Kenya: United Nations Environment Programme. doi: 10.18356/ff6d1a84-en.
  • UNFCCC (2014a) Non-market based approaches. Technical paper. FCCC/TP/2014/10. Bonn, Germany: United Nations Framework Convention on Climate Change. Available at: http://unfccc.int/resource/docs/2014/tp/10.pdf (Accessed: 25 January 2016).
  • UNFCCC (2014b) Updated compilation of information on mitigation benefits of actions, initiatives and options to enhance mitigation ambition. Technical paper FCCC/TP/2014/03. Bonn,Germany: United Nations Framework Convention on Climate Change. Available at: http://unfccc.int/resource/docs/2014/tp/03.pdf (Accessed: 25 January 2016).
  • UNFCCC (2015) Mitigation benefits of actions , initiatives and options to enhance mitigation ambition. Technical paper 2015. Bonn, Germany: United Nations Framework Convention on Climate Change.
  • UNFCCC (2017) Urban environment related mitigation benefits and co-benefits of policies, practices and actions for enhancing mitigation ambition and options for supporting their implementation. Technical paper by the secretariat. Bonn, Germany: United Nations Framework Convention on Climate Change.
  • UNFCCC (2018) Talanoa dialogue for climate ambition. Synthesis of the preparatory phase 19/11/2018. Bonn, Germany: United Nations Framework Convention on Climate Change.
  • van Vuuren, D. P. et al. (2018) ‘Alternative pathways to the 1.5 °C target reduce the need for negative emission technologies’, Nature Climate Change, p. 1. doi: 10.1038/s41558-018-0119-8.
  • Wright, L. and Fulton, L. (2005) ‘Climate Change Mitigation and Transport in Developing Nations’, Transport Reviews, 25(6), pp. 691–717. doi: 10.1080/01441640500360951.